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a b s t r a c t

The popularity of online social networks (OSNs) makes them attractive platforms to advertise products.
Previous work on marketing in OSNs utilized older diffusion models that do not capture the interac-
tions of modern OSNs and hence there is a need to develop a model that accounts for the interactions
that occur in current OSNs. In this paper, we introduce a new model for information flow in online
social networks that captures the sharing behavior exercised by users when they pass information from
one online social network to their social circles in another network. We, then, formulate a problem
of maximizing the marketing reach where the diversity of users’ other social networks is taken as a
constraint. We also propose a greedy algorithm to solve the aforementioned optimization problem.
Numerical results show that the proposed algorithm achieves better results than algorithms that are
based on classical degree centrality metric and with comparable running time.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Social networks impact many aspects of individuals life such
as whom they have a discussion with and consequently, whom
may influence their opinion about different issues. Beyond the
human influence, these social networks have been exploited to
design better algorithm for various applications such as: routing
algorithms that guide data forwarding based on the social ties
(e.g. [1]), proactively reducing the peak load of the cellular net-
work based on information dissimulation on the social network
(e.g. [2]), etc. Recently, the popularity of online social networks
(OSNs) and their increase influence in shaping and swaying peo-
ple opinion has driven advertisers to utilize them as a marketing
platform. This can be done directly where an advertiser pays the
OSN to place an ad on a popular content (e.g. popular YouTube
video) or indirectly via giving a freebie to some influential users
of the targeted social network in the hope that they make a
good review of the product or recommend it to their online
social circles. Therefore, the ability to identify influential users
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is crucial for effective viral marketing strategy. The basic idea
behind viral marketing is to market a product to few influential
individuals who can endorse the product to their social networks.
The hope is to create a cascade effect to spread the marketing of
the product further down the social network; from one person to
his acquaintance circles and so forth.

The use of social relationship to influence other people’s opin-
ion is something that had been studied before using diffusion
models, which are used to model how ideas, innovation, in-
fluence, and diseases spread through social networks. Most of
the works that attempt to determine the influential nodes are
based on two diffusion models: the threshold model and cascade
model [3]. In the threshold model, a weight is used to quantify the
ability of a user to influence his friend. If the sum of weights of a
user’s active friends (i.e. those who bought the product) exceeds
certain threshold, then that user becomes active. In the simplest
form of the cascade model, each active user is given one chance
to convince its inactive neighbors to adopt the product according
to some probability distribution.

The basic forms of the current diffusion models were devel-
oped long before the widespread use of Internet and the explosive
increase in using OSNs (Early forms of these models appear in the
sociology literature in the 1970’s [4,5]). Hence, their development
were mainly based on the social interaction between individuals
and as a result, they do not account for the specific interactions of
modern OSNs (e.g. share, re-tweet, etc.) that surge in popularity
in recent years. As result, they suffer from several problems,
as we shall discuss in detail in Section 3, that make their use
not appropriate for modern OSNs. With this in mind, this paper
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presents a first attempt at creating a new model to better capture
the influence of user in modern OSNs. Our model differs from
previous ones in that it links the influence of user to the typical
actions that occur in OSNs, which is not the case in the previous
models, where the user influence is typically related to influence
probability between different members. Moreover, our model
accounts for the possibility that a user may have presence in other
social networks.

The main contribution of this paper can be summarized as
follows:

• The paper highlights several limitations with current diffu-
sion models that need to be addressed to better evaluate the
influence spread in modern OSNs.
• The paper presents a new model that better captures the na-

ture of interactions on modern OSNs and hence it provides
a more realistic assessment of user’s influence in OSNs.
• With aim of maximizing the impact of a viral marketing

campaign across several OSNs, the paper introduces a new
Diversity-Constrained Influence Maximization (DCIM) problem
that aims at identifying the most influential users in a target
network while incorporating a diversity constraint that aims
at ensuring that information is spread across several social
networks.
• The paper describes several greedy algorithms to solve the

proposed DCIM problem, analyzes their complexity analyti-
cally, and studies their performance under various network
conditions using extensive simulations.

The rest of this paper is organized as follows. In Section 2,
we review the related work. In Section 3, we discuss the lim-
itations of the current diffusion models. Section 4 presents the
proposed model as well as the related optimization problem. In
Section 5, we describe few greedy algorithms for tackling the
optimization problem and present the complexity analysis for
these algorithms. Simulation results are discussed in Section 6.
We conclude the paper in Section 7.

2. Related work

The popularity of social networks had motivated researchers
to explore different aspects of these platforms (e.g. [6–13]).
Morente-Molinera et al. [6] present a novel Group Decision Mak-
ing process that extracts opinions expressed by expert on online
social network to reach the final decision. Muller and Peres [7]
looked into the effect of social network structure on innovation
growth. In [8], a method to create fuzzy ontologies from the posts
of users on online social networks is presented. Feng et al. [14]
propose a recommendation system that aims at improving the
personalized information presented to the user by exploiting in-
formation gathered from the social factors and social circles. Ren
et al. [9] investigate the spreading and vanishing of information
using a competition model with intervention in online social net-
works. In [10], the impact of merging social networks with IoT on
the spread of malware is investigated. Molano et al. [11] propose
a framework to connect IoT object through social networks in
order applications for industry 4.0. Another important research
area is utilizing the social networks as a medium for digital mar-
keting [12] and an enabler for market-oriented organization [13].
Of particular interest here is exploiting the social networks to
market products by propagating the recommendations of prod-
uct through these social networks. Analysis of such propagation
requires the use of diffusion models that are used to model how
recommendations and opinions about a product spread in a social
network.

The current diffusion models have roots in early sociology
studies such as those by Schelling [4] and Granovetter [5] in

the 1970’s. In Schelling’s work [4], a resident is classified as
either content or discontent based on his neighborhood color.
Simliarly, Granovetter [5] developed a model for persons with
two mutually exclusive behaviors. Models based on these ideas
were used to study the propagation of influence in social net-
works. The maximum influence problem was introduced first
in [15,16] by Domingos and Richardson where a probabilistic
model was used to determine the customers that have large
impact on the network. In [17], Kempe et al. formulate the prob-
lem as discrete optimization problem and focus on determining
an initial set of nodes to maximize the final set of nodes that
become active (adapt the idea being spread). They provide an
approximation guarantee for efficient algorithms to deal with
the influence maximization problem considering several diffu-
sion models. They showed a natural greedy strategy to obtain a
solution that is provably within 63% of the optimal for several
classes of models. A faster approach to compute the influence
function of [17] was proposed in [18], which provides a general
framework for selecting nodes, from a graph, to optimize the
detection of outbreaks. The authors of [18] have shown that the
model used in [17] is a special case of their proposed network
outbreak detection problem. Chen et al. [19] proposed speed-
up improvement over the original greedy algorithm [17] for the
independent cascade and weight cascade models. Borgs et al. [20]
proposed an algorithm for the influence maximization problem
in nearly optimal time assuming independent cascade model of
network diffusion.

In [3], the authors tackle the problem of minimizing the seed-
ing set required to achieve a coverage that reaches a certain given
percentage of the total size of the network (number of nodes).
They assume that the propagation of information is local (i.e. it
reaches within certain d hops from the source). They have shown
that the seeding set size is proportional to the size of the network.
They have used a simplified version of the linear threshold model.
Their model uses an influence factor ρ that determines whether
a node becomes active or not. If ρ of a node neighbors become
active, then that node will be active in the next round. The
number of rounds d (number of propagation hops) is a constraint
in their problem setup.

In [21], the authors use a game theoretic approach to develop a
heuristic to tackle the influence maximization problem using the
linear threshold model. Their approach gives comparable results
to other existing solutions but it has a faster running time. The
authors in [22] focus on the problem of selecting k users to max-
imize the influence on a targeted set of users. They used a slightly
modified version of the independent cascade model. In [23],
Bhattacharya et al. develop and analyze a epidemiological-based
mathematical model to study digital marketing in a social net-
work. However, it is not clear how to expand this model when
dealing several social networks that have an overlapping presence
of users.

In [24], the authors analyze various influence mechanisms to
determine the number of buyers of a given product. They model
the network as a scale-free graph. They found out that given free
product samples to small set of users can influence a larger set
of users to purchase the product. In [25], the authors proposed a
time-constrained influence maximization problem that seeks to
find a seed set that influences the maximum number of users
within a given time constrain. They use a modified indepen-
dent cascade model that accounts for the delay to propagate the
influence in the network.

The influence spread when user is present in multiple net-
works have been considered in [26–30]. In [26], the authors study
the information diffusion between physical network and online
network using the conventional SIR epidemic model. In [27],
Liu et al. focus on studying the characteristics of networks that
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include both online and offline interactions such as community
structure. They also develop algorithms for event recommenda-
tion system and found out that the considering both online and
offline interactions provide better metric to recommend users to
events. Shen et al. [28] study the problem of identifying the min-
imum set of users that influence the largest number of common-
interest users. They combined the different networks into a single
network by creating a single node to represent the user presence
in all OSNs in which he participates. Nguyen et al. [29] study the
influence maximization in multiple networks by using a coupling
scheme to represent the multiple network as single network,
which is used to study the influence propagation in these net-
works. Using a similar coupling approach as [29], Zhang et al. [30]
tackle the least cost influence maximization problem when users
are present in multiple social networks. The analysis in [28–30] is
based on linear threshold model, which suffers from the problems
that we have highlighted in the introduction. Moreover, the goal
of [30] is to find the minimum seeding set required to achieve
a coverage that reaches a certain given percentage of the total
size of the combined network ([3] can be considered as special
case of [30]). In our work, we seek to find a set of k users that
maximizes the marketing reach, which is used as an indicator
for the user influence. In our formulation, we also have diversity
constraint to ensure that information is spread over different
OSNs.

All of these works use the two basic models described in
the introduction with some modifications to study a particular
variation of the influence maximization (e.g. limit propagation
to a certain number of hops). Consequently, the obtained results
may not be the best reflection of what actually occurs in OSNs
due to problems that are described next.

3. Limitations of current diffusion models

As mentioned in the previous section, the current models have
sociology origins. Consequently, using these models to analyze
online social networks may not capture the interactions that
occur on the online space accurately as these models were devel-
oped based the interactions that occur on ordinary face-to-face
interactions. In this section, we discuss some of the limitations
of the current models when it comes to analyzing online social
networks.

Looking at the current models in the context of product mar-
keting, they generally use binary classification of users: either the
user will buy the product (active) or he will reject it (inactive).
However, such binary classification is problematic to adopt for
online social networks. To clarify this, let us consider human
interaction and assume that person A is attempting to sell some-
thing to person B. By the end of their conversation, it may be
easy to conclude whether person B will buy the product or not.
Note, however, that it is certainly possible that B is still hesitant
and a simple binary classification is not suitable (nonetheless, in
current models, B must be classified to one category). On the
other hand, if person A is disseminating his marketing message
through an online social media network, then classification of
followers (i.e., users who receive this message) as either active or
inactive may not be as simple as the previous direct interaction.
There is no telltale sign that a follower will buy the product or
not.

Moreover, in ordinary human society, the influence of a person
is related to the size of his community and how well is he known
in his community. However, nowadays, due to the presence of
people in multiple online social networks, it is misleading to
judge the influence of a person based on his presence in one OSN.
For example, consider a user A with small number of friends on
Facebook (see Fig. 1). If A posts an opinion piece in his Facebook

page and his friends share a link to his post via their other OSN
accounts, then the number of users who read this post could
potentially be very large if A’s friends have strong presence in
other OSNs. Hence, based only on the user’s Facebook presence,
A is not influential but taken into consideration the sharing to
other OSNs (via friends), A may be more influential than other
users in Facebook. Add to that, the number of friends in ordinary
social network is typically small, while in OSNs, having followers
or subscribers in the hundreds is not something uncommon. In
addition to that, in ordinary human social network, the friendship
relationship is mostly symmetric (A is a friend of B and B is
a friend of A). However, in OSNs, that is not the case; A may
subscribe (or follow) B but B may not follow back. Even if we
try to adopt the current models to OSNs by, say, using a directed
graph for each OSN that the user is present in, we will run into
difficulties. For example, because there is no mechanism in some
OSNs to propagate the content further in the same OSNs (e.g. if
you receive a notification about new YouTube video, you cannot
re-post it to your subscriber directly). Hence, if you use the cas-
cade model, the propagation will be limited to one-hop from the
source. Similarly, what does it mean to use the threshold model
in this case? Does it mean that user receives certain number of
posts about the product from the group to which he subscribed?
How practical is that if he subscribes to a large number of users?
We argue here that it would be more natural to capture the
interactions in the modern OSNs using a new model rather than
attempting to adopt the existing models.

Another problem that we see with current models is that they
have the notion of influence probability, which we believe is
quite challenging to estimate practically. Estimating the influence
probability that user A have over B is not trivial as it may require
knowing the history of interaction between these users and how
many times did A manage to ‘‘convince’’ B about certain issue.
Based on influence probability, the user will be classified as active
or inactive. However, in our model, we are focusing on marketing
reach, which is how many users will eventually read (or see
or view) the post. We are not classifying the user as active or
inactive. Our view is that in OSNs, it is not realistic to classify the
user in a binary fashion. In marketing context, how is it possible
to say a follower of A is an active (e.g. will buy the product) or
inactive (will not buy the product). It is more feasible, through the
current tracking technique, to determine whether the followers
view the post and/or share that post. Note also, that in the IC
model, there is one probability that is related to the interaction
of two users A and B which is the probability that A will activate
B. In our case, we have two probabilities: (i) the probability that
B reads A’s post and (ii) the probability the B shares the post of
A with his own followers in other OSNs. The main advantage of
our model is that it relates more realistically to the actions that
a typical user may do in an OSN, which can be easily estimated
given the ability of current OSNs to track users’ activities when
they are logged into the OSNs. These tracking techniques are
becoming so sophisticated to the degree that Facebook recently
announced that it will track users even if they do not have a
Facebook account [31]. A description of tracking approaches as
well as tracking statistics in the top one million sites can be
found in [32]. In the next section, we describe our proposed
model, which aims to better capture the interactions that occur
on modern online social networks and address the limitations of
the current models.

4. Model and optimization problem

4.1. Model

Online social networks (OSNs) provide platforms for interac-
tion between users. Typically, a user creates an account before
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Fig. 1. Illustration of information propagation via sharing to other social networks. User A makes a post in Facebook. His friends B and D read it and share it to
their other social networks (Twitter and Instagram, respectively).

s/he starts disseminating his or her own content, which is site
specific (e.g. videos, short messages, photos, etc.). Majority of
social networks allow users to follow (or subscribe to) other users’
accounts. Whenever a user produces a new content, followers are
notified or receive the new content (e.g., a new tweet is received
by all of the user followers). Moreover, an increasing number of
these OSNs allow users to share content with their social circles
in other OSNs via some communication means (e.g. email) or
posting directly to other OSNs.

Basic notation and terminology: Let I = {0, 1, 2, . . . ,m} be
the set of identifiers for the online social networks. An identi-
fier is an integer that corresponds to a particular online social
network (e.g. 0 = Facebook, 1 = Twitter, etc.). We use OSNj to
denote the set of users who belong to the OSN with identifier
j. An advertiser selects one of these OSNs to be the target of its
advertising campaign (i.e. the initial seed of users will be selected
from this targeted network). We refer to this selected OSN as
the targeted OSN (TOSN) (without loss of generality, we assume
that the identifier of TOSN is 0). We use TOSN as both a term to
refer to the selected OSN by the advertiser as well as an identifier
of the selected OSN (the intended meaning should be clear from
context). Moreover, we assume a universal ID for users. In other
words, a user is identified by the same ID across all the OSNs
(see [29] for an efficient method to assign universal IDs). For any
user i ∈ OSNTOSN , we refer to the set of OSNs, other than TOSN,
in which i is a member as User Other Network (UON) (i.e., UON
of i is UON(i) = {j : j ∈ I \ TOSN, i ∈ OSNj

}). The set of
followers (subscribers, friends) of user i in OSNj is denoted by
F (i)j. We represent the social network as a directed graph G =
(V , E) where the vertices represent the users and the directed
edges represent the direction of information flow (i.e. from user
to its followers or from a user to its other social networks).
Note here that a user may have more than one UON but for
simplicity, we are assuming that each user may have up to one
UON. Our analysis can be easily extended to accommodate the
case of multiple UONs per user. We consider one-hop propagation
within a given OSN. According to [3], there is little difference
when the authors compare the cost-effectiveness of marketing
campaign for 2, 3, and 4-hop propagation cases. Hence, restricting
our analysis to one-hop should not affect the overall conclusion
greatly. To clarify these terms, suppose that a company wants to

advertise its product via YouTube (e.g. give a freebie to YouTuber
to make a product review). A user A sees this video and shares a
link to it via his Twitter account. In this example, YouTube is the
TOSN while Twitter is the UON of user A. Linking a user profile
in one network with the same user profile in another network is
beyond the scope of this paper (see [33,34] for approaches to do
the linking).

The UON of each user is characterized with a tuple (αi, Li)
where αi represents the size of that network and Li is the iden-
tifier of UON (i.e. αi = |F (i)Li | where Lj = {j : j ∈ I \ TOSN, i ∈
OSNj
}). With each user j, we associate two probabilities:

• ρr
j,i the probability that the follower j reads the information

(i.e. ad in our case) generated by another user i. Note that
this probability is zero if j does not follow i.
• ρs

j,i the probability that the follower j shares the information
(i.e. ad in our case) generated by another user i given that
the user had already read it. As ρr

j,i, ρ
s
j,i is zero if j does not

follow i.

We also define the following two sets for each user in TOSN:

• F (i) the set of followers, i.e. set of users in TOSN who receive
the content generated by user i (we also refer to this set as
the children of i). This is basically F (i)TOSN but, for simplicity,
we drop the superscript and use F (i) instead.
• P(i) the set of parents, i.e. set of users that user i is following

in TOSN.

We note here that the information flow is controlled by the
online social network logic. In our follower-based network model,
whenever the user makes a post, it will be received by all of its
followers.

Marketing reach: In marketing terminology, the marketing
reach refers to the number of people who are exposed to the
ad. This has nothing to do with how many people took action
based on their exposure to the ad (note this is different from other
models where they focus on influencing others). For example, if
user A has 100 followers and he posted an ad of a certain product
to his followers. Now, if 50 of his followers read (or saw) the ad,
then we say that his marketing reach is 50 (the ad reached 50
followers). On the other hand, if 10 out of the 50 followers, who
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read/saw the ad, were influenced by his product ad and bought
the product, then we would quantify the influence spread as 10.
It should be clear that quantifying how many followers read/saw
the post is more practical compared to attempting to determine
how many are influenced? The former depends on the actions
taken by users on the OSNs, which is easy to track, while the
later depends on what the user internalized about the ad. We are
proposing to use the value of the marketing reach of a user as
an indicator for the influence of that user. Hence, maximizing the
influence will be equivalent to maximizing the marketing reach.
Toward that goal, we would like to identify a set of users that will
maximize the spread of the ad within the TOSN and to the UONs
via sharing by users in the TOSN who received the ad. Each user
will be given a weight to indicate its contribution in spreading the
ad. We define the marketing reach σ (i) of user i by the following
equation:

σ (i) = αi +
∑
j∈F (i)

(
ρr
j,i + ρr

j,i · ρ
s
j,i · αj

)
= αi +

∑
j∈F (i)

βj,i

(1)

where βj,i = ρr
j,i

(
1+ ρs

j,i · αj
)
. The reach of a node is quantified

by two terms:

• The first term αi characterizes the size of UON that user can
share information with. We are assuming here that if a user
is selected to be a ‘‘promoter’’, s/he will share the content
with his or her other OSNs (i.e. psi,i = 1)(maybe for extra
incentive).
• The second term sums up the contribution of the followers

to user i. Collectively, the summation term represents the
expected number of followers who will read the ad dis-
seminated by that user as well as the expected number of
users in the followers’ UONs who may receive it via the
user’s followers who decide to share it with their UONs. For
a follower j with large number of subscribers in its UON,
βj,i ≈ ρr

j,i · ρ
s
j,i · αj which means that the main contribution

of j to its parent is channeling the information to its UON
(αj, Lj).

Thus, the marketing reach of a user is not only related to the
number of his followers who read the ad but it also incorporates
the size of other social networks that he may leverage to spread
the word via his followers who chose to share the ad with their
UONs.

Collective marketing reach: We now turn our attention to
defining the collective marketing reach of a set of users S. Obvi-
ously, the sizes of their UONs and the expected marketing reach
via their followers will be factors in determining their collective
influence. More specifically, if S represents the selected set of
users (we call it the marketing seed) to spread the ad, which does
not have any parent–child pair among them (the reason for this
will be clarified shortly), and

U =
⋃
m∈S

F (m) (2)

is the union of their followers, then we define the collective
influence by:

Φ ′(S) =
∑
j∈S

αj +
∑
m∈U

ρr
m

(
1+ ρs

m · αm
)

(3)

It has been assumed here that the sets of followers in other
networks for users i and j in the seed set are disjoint. Here, ρr

m
is the probability that a follower m will read the ad if it receives
the ad from multiple parents who are in the marketing seed.

Assuming that the probability of reading from each parent is
independent from each other, we can compute ρr

m as follows:

ρr
m = 1−

∏
i∈S∩P(m)

(
1− ρr

m,i

)
= 1− π r

m (4)

where

π r
m =

∏
i∈S∩P(m)

(
1− ρr

m,i

)
=

∏
i∈OSNTOSN

(
1− ρr

m,i

)xi (5)

and xi indicates whether user i belongs to the seed set S (1) or
not (0). Note that, as mentioned previously, ρr

m,i is zero if i is not
a parent of m.

In a similar way, ρs
m is the probability that the node m will

share the ad with its other social networks if it receives it from
multiple parents who are in the initial seed, i.e.,

ρs
m = 1− π s

m (6)

where

π s
m =

∏
i∈OSNTOSN

(
1− ρs

m,i

)xi (7)

Fixing the parent–child dependence problem: There is one
issue related to the definition of Φ ′(S) that we need to fix to
extend this definition to an arbitrary set of users S. The definition
does not account for the dependence between parent and child
that is manifested in the term βj,i that each child j contributes to
its parent i. To illustrate the problem in a concrete way, assume
that j is a follower of i and that the αj is quite large. Hence,
the term βj,i contributes considerably to the reach of the parent
σ (i). The problem will occur if both i and j are selected in the
marketing set. Since j is selected, we are assured that we can
reach the other social network of the user (αj, Lj) directly via j.
However, the value of this network reach (with some scaling) is
also counted in the parent reach function (the term ρr

j,i · ρ
s
j,i · αj).

Furthermore, if that term is removed from the parent reach (since
the network (αj, Lj) is reachable directly through the child), the
parent reach may become too low and we are better off by
replacing him with another user. Note, however, if the child j
were not in the marketing set, then we needed to incorporate
the term βj,i since the network (αj, Lj) can be reached only via the
parent (indirectly by passing the ad to its followers including j).
To fix this parent/child dependence, we introduce the following
corrective term:

Φ ′′(S) =
∑
i∈S

∑
j∈S

βj,i · xi · xj (8)

Observe that Φ ′′(S) will consider the contribution βj,i when
both parent i and the child j are present (xi = xj = 1) where
we define βi,i = 0. Note also that βj,i = 0 if i and j do not
have parent–child relationship since in that case ρr

j,i = 0. Based
on this consideration, we define the marketing reach Φ(S) for an
arbitrary set S as:

Φ(S) = Φ ′(S)−Φ ′′(S) (9)

Note that Eqs. (3) through (9) define a non-linear set of equa-
tions that make finding the set S that maximizes Φ(S) impractical
for large social networks. Moreover, the parent/child dependence
makes most terms vary with the particular choice of S, which pre-
vent us from pre-computing the values of the terms to speed-up
the calculation.

An approximation for the collective marketing reach: To
overcome the difficulties mentioned in the previous subsection,
we will make an approximation to be able to compute the set S
more efficiently. Since a user is likely to receive the information
from several parents that have different likelihood to entice the
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user to share with its other social network, we will link each user
with its most influential parent in the sense that the probability
that the user shares the received content with its social network
is the highest among all parents of that user. More specifically,
we define the influential parent P(j) of user j as follows:

P(j) = argmax
i∈P(j)

ρr
j,i · ρ

s
j,i (10)

Due to this linkage, each parent i will have a set of children
that are highly influenced by that parent, which we denote by
F (i), and can be defined formally as:

F (i) = {j ∈ F (i) : P(j) = i} (11)

Based on the new linkage between the children and their most
influential parents, we define an adjacency matrix A = [aji] to
indicate whether a child j is linked with parent i as follows:

aji =
{
1 if P(j) = i
0 otherwise

(12)

Since each node j has at most only one influential parent, each
row of A has only one 1 at most and the rest of entries are zero.
Based on this new formulation, the value of the contribution of
a follower in the union set U will be determined by its most
influential parent only. In other words, both π r

m and π s
m will

depend on the most influential parent P(m), i.e.

ρr
m = ρr

m,P(m) (13)

and ρs
m can be defined similarly. Consequently, Φ ′(S) will become

simply the sum of marketing reach σ (i) for all the users in the
set S (each child is influenced by one parent only). Despite this
simplification in calculation of Φ ′(S), the issue of parent/child
dependence still exists in the new formulation. Nonetheless, the
new formulation allows us to pre-compute the marketing reach
of each user as well as the corrective term related to each parent–
child pair; thereby, enabling computation speed-up. This can be
cast in the form of a profit matrix Θ = [ϑji] with diagonal
elements representing the gain from adding a particular user
and the other elements act as corrective terms to adjust the
contribution of the UON added to parent i from its child j. The
variable ϑji is defined as follows:

ϑji =

{
σ (i) if i = j
−aji · βj,i if i ̸= j

(14)

Here, the terms σ (i) and βj,i are calculated based on the follower
set F (i). Hence, the collective marketing reach Φ̃(S) of a set S
becomes:

Φ̃(S) =
∑
i∈S

∑
j∈S

ϑij · xi · xj (15)

where we use Φ̃(S) to indicate the marketing reach of the set
S under the new formulation to avoid confusion with marketing
reach Φ(S) under the original formulation.

Diversity factor: Another aspect that we want to take into
account is the desire of a marketer to ensure that the ad reaches
different UONs via sharing. For example, the marketer may target
Facebook but may want to make sure that the ad reaches at least
5 different UONs via sharing from Facebook users to their other
social networks. We refer to this requirement as the diversity
factor (DF), which indicates the number of different UONs that
the ad is required to reach via sharing from the TOSN (i.e. DF =
|
⋃

j∈S UON(j)|). Moreover, the marketer may want to reach a spe-
cific UON (e.g. Twitter) via sharing from the TOSN (e.g. Facebook).
We refer to this requirement as the targeted diversity set (TDS),
which is specified by a list of the types of UONs that marketer
wants specifically to reach via sharing by the selected marketing

seed and their followers (i.e. a list of Lm’s values of the de-
sired UONs). Obviously, such diversity requirement will influence
which users will be selected in the seed set. For example, user i
may have low number of friends in Facebook but large number
of followers in Twitter. If the marketer is targeting Facebook but
have Twitter in its TDS, user i may be more preferable over user j
who has a larger number of friends in Facebook but no presence
in Twitter.

4.2. Optimization problem

Let N = 1, 2, 3, . . . , n be the set of all users in the targeted
online social network and xi indicate whether user i is selected
(1) or not (0). We formulate the following Diversity-Constrained
Influence Maximization (DCIM) problem:

maximizexi
∑
i∈N

∑
j∈N

ϑij · xi · xj

subject to
n∑

i=1

xi = k

xi ∈ {0, 1}, i ∈ N

|

⋃
xm=1

Lm| ≥ DF

TDS ⊆
⋃
xm=1

Lm

(16)

In other words, we want to select a subset of k users S ⊂ N
to maximize Φ̃(S) with diversity requirement dictated by the last
two constrains. The first diversity requirement ensures that the
number of different UONs that the ad should reach via sharing
from the target social network should be at least DF . The second
diversity requirement specifies the set of UONs (TDS) that should
be specifically targeted. Here, we are assuming without loss of
generality that |TDS| ≤ DF . If |TDS| > DF , the requirement
regarding DF is redundant as it will be automatically satisfied
once the TDS requirement is satisfied. If there is no diversity
requirement imposed (i.e. DF = 0 and TDS = φ), this problem
reduces to Quadratic Knapsack Problem (QKP), which is NP-hard
in the strong sense and hence our problem is an NP-hard as
well since it is a generalization of QKP. Moreover, it is still an
open research problem to determine whether or not a constant
approximation ratio for QKP is possible [35].

5. Greedy algorithm

In this section, we present a greedy algorithm for the DCIM
problem, which we refer to as Greedy with Diversity Enforced at
End (GDEE). To highlight how the selection criteria that takes
into account the users presence in other social networks result
in better seed set, we use the popular degree centrality metric
(i.e. number of followers in our case) that is typically used to
determine the most influential nodes in social network [19] as a
basis for comparison. A naive use of this metric would be to pick
the top users in terms of their number of followers. However, this
is not optimum in OSNs since there may be overlap between the
followers of the top users. A better approach is to focus on the
union set of the followers as a metric for selecting the users as
described in Algorithm 1 below.

Algorithm 1 Greedy based on Number of Followers (GNF):
The goal of this algorithm is to select the set of users that results
in the largest number of followers. To add a new user to the
marketing set, the algorithm examines the size of the union set of
followers of the marketing seed due to the addition of each user
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Algorithm 1 Greedy based on Number of Followers (GNF)

Input: Target seed set size N
Output: Seed set S
1: Initialize the seed set S = φ

2: while |S|̸= N do ▷ loop while the required size of seed set
S is not achieved

3: u∗ ← arg max
u
|

⋃
m∈S∪{u}

F (m)| ▷

find the user whose addition maximizes the total number of
followers of the seed set

4: S ← S ∪ {u∗}
5: end while

to the marketing seed and picks the user u∗ that results in the
maximum increase. This process is repeated until the required
size of the seed set is achieved. Note here that the GNF is an
improvement over the popular degree centric based selection
algorithm. To see this, consider the case where users i and j
are the top users in terms of their number of followers. A basic
scheme that is based purely on the degree metric (i.e. the number
of followers in this case) would pick these two users in its seed
set. However, if i and j have the same followers sets, then one
of them would be sufficient to reach this group of followers.
Obviously in this particular example, it would be better to choose
either i or j with another user (say m) who has a different group
of followers. Having i (or j) with m in the seed set will ensure that
the ad is spread to a larger audience.

Algorithm 2 Greedy based on Expected Number of Fol-
lowers who read the content (GENF): This is a closely related
variation of GNF. GENF selects the user that results in the max-
imum increase on the expected number of followers who read
the content. We use the notation EF r (m) to refer to the expected
number of followers who read the content posted by user m (see
the discussion related to Eq. (1) for how to calculate EF r (m)).

Algorithm 3 Greedy with Diversity Enforced at End (GDEE):
This algorithm computes the increase in the marketing reach
that is achieved by adding a user i to the existing seed set
(i.e. Φ̃ (S ∪ {i}) − Φ̃ (S)) and picks the user u∗ that results in
the largest increase. The algorithm delays the enforcement of the
diversity requirement to the very end in the hope that some of
these requirement will be met in the early iterations. This gives
the algorithm the freedom in the early iterations to pick the
users that result in the largest increase in Φ̃ . However, when the
number of users remaining to meet the required seed set size
is just enough to satisfy the diversity requirement (line 6), the
algorithm will ignore all the users whose addition will not result
in meeting the diversity requirement (lines 7–9). For example, if
the required diversity factor is 6 and we had achieved a diversity
factor of 5 (i.e. marketing seed set contain users that have five
different UONs types), then when there is one user remaining to
be selected, the algorithm will not consider any user that will
not result in increasing the diversity factor to 6 (i.e. it should
have a different UON type than the five already covered by the
marketing seed).

Algorithm 4 Enhanced GDEE (EGDEE): We will now exploit
the properties of Φ̃(S) to speed up the GDEE algorithm. First,
observe that in step 11 of GDEE, we compute the function Φ̃(S)
twice to determine the increment due to adding the user i. From
(15), we observe that the change in Φ̃(S) due to the addition of a
new user i will be due to the terms that relate this new user with
existing ones. Hence, the change in Φ̃(S) can be expressed as:

Φ̃ (S ∪ {i})− Φ̃ (S) = ϑii +
∑
j∈S

(ϑij + ϑji) · xi · xj (17)

Algorithm 2 Greedy based on Expected Number of Followers
(GENF) who read the content
Input: Target seed set size N
Output: Seed set S
1: Initialize the seed set S = φ

2: while |S|̸= N do ▷ loop while the required size of seed set
S is not achieved

3: u∗ ← arg max
u
|

⋃
m∈S∪{u}

EF r (m)| ▷ find the

user whose addition maximizes the total expected number of
followers who read the content

4: S ← S ∪ {u∗}
5: end while

Algorithm 3 Greedy with Diversity Enforced at End (GDEE)

Input: Target seed set size N and target diversity factor DF
Output: Seed set S
1: Initialize the seed set S = φ

2: while |S|̸= N do ▷ loop while the required size of seed set
S is not achieved

3: inc∗ ← 0
4: R← N − |S| ▷ number of remaining users to achieve

the target seed set size
5: for i ∈ N \ S do ▷ loop through all users who do not

belong to the current seed set
6: if R = DF then ▷

check if the number of remaining users to be selected is just
enough to satisfy the diversity requirement

7: if |
⋃

j∈S∪{i}
UON(j)|= |

⋃
j∈S

UON(j)| then ▷ check if

user i will not improve the diversity requirement
8: continue ▷ skip this user
9: end if

10: end if
11: inc ← Φ̃ (S ∪ {i})− Φ̃ (S) ▷ compute the increase

in marketing reach due to the addition of user i
12: if inc > inc∗ then
13: inc∗ ← inc
14: u∗ ← i
15: end if
16: end for
17: S ← S ∪ {u∗}
18: end while

Observe that maximum increase in Φ̃(S) due to the addition
of user i is ϑii = σ (i). This can be exploited to speed up the
GDEE algorithm in the following way. We first sort the users in
descending order in terms of their σ (i). This ordering will be used
in the for loop of the GDEE algorithm to evaluate the increment
inc in Φ̃(S) due to different users starting with the user that has
the highest σ (i). Moreover, in each iteration of the for loop, we
test whether the maximum increment found so far inc∗ is greater
than σ (i) of the user being considered in that loop iteration. If
that is the case, then we can break the loop. The logic behind
aborting the rest of the loop is that we will not be able to find a
larger increment since the users are sorted in descending order
based on their σ ’s values and we have already found a user i that
satisfies inc∗ ≥ σ (i) ≥ σ (j) for any user j that comes after user
i in the sorted list. We refer to the GDEE algorithm with these
speed-up improvements as Enhanced GDEE (EGDEE) (Algorithm
4).

A similar trick can be used with GNF and GENF by sorting
the users in terms of their number of followers for GNF and
expected number of followers who will read the ad for GENF.
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Algorithm 4 Enhanced GDEE (EGDEE)

Input: Target seed set size N and target diversity factor DF
Output: Seed set S
1: Initialize the seed set S = φ

2: N∗
Sort in descending
←−−−−−−−−−−−
order in term of σ (i)

N

3: while |S|̸= N do ▷ loop while the required size of seed set
S is not achieved

4: inc∗ ← 0
5: R← N − |S| ▷ number of remaining users to achieve

the target seed set size
6: for i ∈ N∗ \ S do ▷ loop through sorted set (in terms of

σ (i)) of users who do not belong to the current seed set
7: if σ (i) < inc∗ then
8: break ▷ the current user under consideration

has σ (i) lower than the maximum increase found so far and
hence there is no need to check the remaining users as their
σ (i)’s will be lower (due to the use of the sorted set)

9: end if
10: if R = DF then ▷

check if the number of remaining users to be selected is just
enough to satisfy the diversity requirement

11: if |
⋃

j∈S∪{i}
UON(j)|= |

⋃
j∈S

UON(j)| then ▷ check if

user i will not improve the diversity requirement
12: continue ▷ skip this user
13: end if
14: end if
15: inc ← ϑii +

∑
j∈S

(ϑij + ϑji) · xi · xj ▷ compute the

increase in marketing reach due to the addition of user i
16: if inc > inc∗ then
17: inc∗ ← inc
18: u∗ ← i
19: end if
20: end for
21: S ← S ∪ {u∗}
22: end while

We briefly describe the trick for GNF (similar reasoning can be
applied for GENF). The users should be considered in this sorted
order and whenever the maximum increment found is greater
than the number of followers for the next user being considered
for addition to the seed set for GNF, we can terminate the search
as it would not be possible to find a greater increment. The
increment is at most equal to the number of the followers for the
user being added (equality is achieved when the followers of the
user do not overlap with those in the union set of the followers
of the users who have been already selected).

Upper Bound for Marketing Reach (UPMR): An upper bound
for the marketing reach can be obtained by observing that Φ(S) ⩽
Φ ′(S) (Eq. (9)). For |S| = k, the maximum value for Φ ′(S) will
be attained if S contains the top k users (in terms of σ (i)) and
these users do not have any overlap between their followers
(i.e. F (i)∩F (j) = φ for any i, j ∈ S). Hence, ρr

m and ρs
s will represent

the probability of reading and sharing that relates a single user
in S and one of its followers. As a result, Φ ′(S) will simply be the
sum of the marketing reach σ (i) of the users in S. In general, if
σs(i) is sorted in descending order, then the upper bound based
on k users can be expressed as:

UPMR =
k∑

i=1

σs(i) (18)

Complexity Analysis: To assess the computational complexity
of the proposed algorithm, let np and nf be the maximum number
of parents and followers that a user can have, respectively. We
first analyze the computational complexity for functions σ (i),
Φ(S), and Φ̃(S):

• σ (i): since the calculation is repeated for every follower of
the user, the computational complexity will be O(nf ).
• Φ(S): For Φ ′(S), the first summation term has a complex-

ity of O(|S|). To determine the complexity of the second
summation term of Φ ′(S), observe that we have |S|nf fol-
lowers in the union U at most, which results in complexity
O(|S|nf np) (cost of computing ρr

m and ρs
m is O(np)). For

Φ ′′(S), the cost is O(|S|2). Typically, the seed set size |S| is
much smaller than the maximum number of parents np and
followers nf . Hence, the complexity of calculating Φ(S) is
O(|S|nf np).
• Φ̃(S): The determination of the most effective parent will

involve evaluating all parents for each user, which has at
most np parents and hence the cost will be O(nnp). The
determination of the adjacency matrix coefficients aij has a
cost of O(n). The computation of the diagonal elements of
Φ matrix has a cost of O(nf ) and for off-diagonal elements,
the cost is O(1). Hence, the total cost for computing Φ is
O(nnf+n2

−n). The previous computations will be done once
with a total cost of O(n(n + np + nf )). With pre-computed
values for Φ at hand, Φ̃(S) will cost O(|S|2).

Now, let us analyze the complexity of the algorithms pre-
sented at the beginning of this section:

• GNF: For each iteration, the algorithm examines each user
in the TOSN to determine the one that results in the largest
increase in the number of followers. To do this, the al-
gorithm computes the union of user’s followers and the
union set of all the followers of previously selected users.
A linear approach to the set union will mean that in each
iteration, the cost of computing the union between user
with nf followers at most and union set that may have at
most (i − 1)nf members if we consider iteration i is O(inf )
with a worst case value when we have selected the last
user (i.e. O(|S|nf )). This needs to be repeated for n users
to determine which one will result in the highest increase.
Hence, the complexity of GNF is O(|S|nnf ).
• GENF: The only difference from GNF is that we need to

compute ρr
m, which costs O(np). Hence, the overall cost of

GENF is O(|S|nnf np).
• GDEE: For each of the |S| iterations of the while loop, the

algorithm computes Φ̃(S) twice to determine the increment
inc per candidate user, which costs O(|S|2). Hence, the cost
per iteration is O(|S|2n) and the overall complexity of GDEE
is O(|S|3n). It is worth noting here that the complexity of
the algorithm would be O(|S|2nnf np) if we were to use Φ(S)
instead of Φ̃(S).
• EGDEE: This is similar to GDEE but involves sorting the users

in terms of their σ ’s value (cost O(n log n)). In addition, the
cost of evaluating the increment in Φ̃(S) is O(|S|). Hence,
the loop will cost O(|S|n) per user. Therefore, the overall
cost is O(n(log n + |S|2)). Note that, as we have explained
previously, the algorithm will run faster than the worst case
cost obtained here due to premature termination of the loop
since in a real social network, small percentage of users
have large follower base which in turn means that the larger
number of users may not need to be examined as they do
not have large marketing reach.
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Fig. 2. Marketing Reach for the different algorithms when the percentage of users who have UON with sizes uniformly distributed between 1 and 5k are: (a) 1% (b)
5% and (c) 10%.

Fig. 3. Marketing Reach for the different algorithms when the percentage of users who have UON with sizes uniformly distributed between 1 and 10k are: (a) 1%
(b) 5% and (c) 10%.

Fig. 4. Marketing Reach for the different algorithms for Facebook–Twitter dataset when the percentage of Facebook users who have UON are: (a) 1% (b) 5% and (c)
10%.

6. Simulation results

6.1. Simulation setup

To evaluate the proposed algorithms, we use the following
datasets:

• Dataset0: This is the base dataset and used for all sim-
ulation unless otherwise stated. we generated target net-
works using the Barabási–Albert model [36]. The generated
network size consists of 10k users. In previous work that

analyzed diffusion models (e.g. [17,19,30]), unknown pa-
rameters (e.g. influence probability, weight of graph edge)
are assigned values from a uniform random distribution
between 0 and 1. Following this, the values of read and share
probabilities are assigned values from a uniform distribution
between 0 and 1. Certain percentage of the total number of
users have UONs (we denote this percentage by ρ). The sizes
of these UONs (i.e. αi’s) are generated using a uniform ran-
dom distribution between 1 and β . This is used to simulate
scenarios where diversity is of no concern (and hence UON
type is the same for all users who have UON).
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Table 1
Running time in milliseconds of the various algorithms for different seed set
size. Tparent is the time to compute the most influential parent for each user and
Tprofit is the time to compute the profit matrix Θ (β = 10k, ρ = 1%).

Seed size GNF GENF Tparent Tprofit GDEE EGDEE UPMR Original

4 2489 2484 186 2890 6 10 2492 22769
8 2509 2504 185 2895 14 11 2513 78895
12 2510 2507 182 2894 26 11 2509 166906

Table 2
Marketing reach of the various algorithms for different seed set size (β = 10k,
ρ = 1%).
Seed size GNF GENF EGDEE UPMR Original

4 6388 6171 39890 40187 40170
8 9923 9853 78477 78967 78934
12 12060 12442 115641 116547 116487

• Dataset1: Similar to Dataset0 with α = 1% but UON types
are different to investigate diversity impact. Here, the types
of UONs (i.e. Li’s) are chosen between 1 and 12 (inclusive)
according to the following distribution: 45% of these UONs
are set to type 1 while the remaining ones are assigned types
2 to 12 randomly and in equal proportion (i.e. for types 2
to 12, each represents 5% of total number of UONs). The
size of each UONs is uniformly chosen between 1 and 10k.
This dataset allows us to examine the impact of diversity
constraint when there is an UON that is more popular than
the others (i.e. UONs of type 1 in this case).
• Dataset2: Similar to Dataset1 but here there is no popular

UON and all UONs are equally likely. Users with UONs are
equally assigned UONs of types(i.e. Li’s) between 1 and
10 (inclusive) (i.e. the number of users who are assigned
type i UON are 0.1% of the total number of users where
i = 1, 2, . . . , 10). However, the sizes of these UONs are
different: the sizes of UON type i are distributed uniformly
between 1 and 10k− 1k ∗ (i− 1). Hence, the average size of
UON type 1 is the highest while average size of UON type
10 is the smallest. In this dataset, we do not have a popular
UON but users are equally presented in all the available
UONs. However, the impact of users within different UONs is
different (users who have UON type 1 have more followers
on average compared to users who have other UON type).
• Facebook–Twitter dataset: This dataset is constructed us-

ing SNAP datasets of Facebook (4092 nodes, 88 234 edges)
and Twitter (81306 nodes, 1 768149 edges) [37]. The net-
work is constructed as follows: Facebook data is used to
represent the target network. A certain percentage ρ of the
Facebook users, who are randomly selected, are assigned a
UON. The size of a UON is the number of followers for a
randomly selected Twitter user.

To compare the different algorithms fairly, the marketing
reach is computed based on the value Φ(S) for the seed set
S obtained by the algorithm even if the algorithm does not
explicitly take UONs into account (e.g. GNF and GENF). It may
be argued here that if a user is going to share with his UON, it
would not matter what criteria is used to select this user; he is
going to share any way. Sharing is a user behavior while selecting
which users to be in the seed set is dependent of the selection
algorithm. Note that the results shown here are the average of
10000 iterations.

6.2. Numerical results

Marketing reach: Fig. 2 shows the marketing for different
algorithms when the percentage of users who have UONs ρ is

1%, 5% and 10%, respectively, when β = 5k (i.e. UONs sizes
are distributed uniformly between 1 and 5k users). The figure
shows that when the percentage of users who have UONs ρ

is small, the EGDEE is performing much better than the basic
algorithms GNF and GENF since it incorporates the weights of
these UONs in its search for the optimal seed set. However,
as this percentage increases, the advantage of EDGEE decreases.
This can be explained as follows. With large number of users
having, on average, the same size of UONs, the chances that GNF
and GENF gain from these UONs value increases as they pick
users that maximize the number of followers. These large sets
of followers are likely to contain members who have large UONs,
which contributes to the marketing reach (even though that GNF
and GENF do not explicitly take these into consideration). Fig. 3
shows the marketing reach when β = 10k. It is clear that the
general pattern is the same as the case when β = 5k. Moreover,
the figure shows also that the performance of GNF and GENF is
even worse here as the size of UONs is larger and taking them
into account becomes more vital to achieving higher marketing
reach especially when the number of users who have UONs is
small. Missing this small percentage of users and simply picking
users with large followers who may not have UONs result in
high penalty in terms of marketing reach. For example, when
ρ = 1%, GNF and GENF marketing reach achieves values that
vary between 21% and 35% of the upper bound of marketing reach
(UPMR) when β = 5k. However, these percentages drop to values
that vary between 8% and 16% of UPMR when β = 10k. Note here
that the marketing reaches for GDEE and EGDEE are identical as
both use the same criteria for selecting the users; the difference
is that EGDEE runs faster than GDEE. For this reason, we do not
show the marketing reach for GDEE separately to improve the
figure clarity. Generally speaking, EGDEE is performing quite well
when compared with the upper bound of marketing reach. It
achieves a value that is over 88% of the upper bound value in
most cases. More specifically, it achieves this performance in 19
cases out of the 30 possible combinations of |S|, ρ, and β shown
in Figs. 2 and 3. For the other cases, its value is between 75%
to 79% of UPMR in 4 cases and between 80% to 87% of UPMR in
7 cases. For the Facebook–Twitter dataset (shown in Fig. 4), we
observe the same general pattern about the relative performance
of EGDEE compared to GNF/GENF. However, the gap between the
UPMR and EGDEE is bigger in this case. This may be due to the
higher density of links that exist in the Facebook set compared
to the synthesis networks used in Figs. 2 and 3. Based on the
analysis of the datasets, we found that, in Facebook, there are
88234 links between the 4039 users while there are 39992 links
between the 10k users in the synthesis sets. This means that there
will be more users with large number of friends in the Facebook
set and as a result, these users will be picked by UPMR as the
optimal set. However, the selected set of users may have large
overlap between them which is not taken into consideration by
UPMR and hence gives a larger value for the marketing reach. On
the other hand, the EGDEE takes into consideration this factor and
hence, it produces a lower value for the marketing reach.

Running time: The running time of various algorithms is
shown in Table 1 and the corresponding marketing reach is
shown in Table 2. For GDEE/EGDEE, there is a one time compu-
tation cost to calculate the most influential parent (Tparent ) and
the profit matrix (Tprofit ). These two times are shown separately
in Table 1. Once the profit matrix is computed (which is based on
influential parent information), the actual search time for seed set
is quite small for GDEE/EGDEE (shown under the heading GDEE
and EGDEE). It is clear from the table, that the GDEE time in-
creases with seed size while the EGDEE time changes slightly due
to the speed-up improvements described previously. Although
the difference in this particular case is not that big, the saving will
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Fig. 5. (a) Marketing reach in various other social networks for GNF, GENF and EGDEE with different diversity factor. (b) Total marketing reach. [ρ = 1%, β = 10k;
dataset1].

be much bigger if we need to compute a bigger set size. Another
point worth noting is that when we compare the total time to
run EGDEE to the time of GNF and GENF, we observe that the
increase in EGDEE time is not drastic but its pay off in terms of
marketing reach is quite high. For example, for a seed set size of
12, the total running time of EGDEE is 182+2894+11 = 3087 ms
which is 22% higher than the time of GNF (2510 ms). On the other
hand, the marketing reach of EGDEE is almost 10 times that of
GNF (Table 2). The tables also include the results for running the
EDGEE using the original marketing reach function (i.e. running
Algorithm 4 with Φ(S) instead of Φ̃(S)) which we refer to as
‘‘original’’). It is clear from the tables that the original formulation
will result in marginal improvement in terms of marketing reach
compared to EGDEE but high price in terms of the running time.
For example, for a seed size of 12, the marketing reach for the
original formulation is 116487 which is 0.7% better than the
value of EGDEE, but EGDEE is 54 times faster than the original

formulation in this case. Thus, EGDEE provides excellent speed
improvement without compromising the performance.

Diversity impact: to investigate the impact of the diversity,
we use dataset1 and dataset2 since they have users with different
UONs (otherwise diversity constraint will not be of use). The
marketing reach in different UONs for different diversity factor
values is shown in Fig. 5(a). It is clear from the figure that the
number of users in UONs, who received the ad that is initiated
in the target network, is quite low when using GNF and GENF
compared to EGDEE since GNF/GENF simply picks users based on
the number of followers in the TOSN without considering their
presence in UONs. Moreover, for EGDEE with low diversity factor
(DF), most of the ads are received by UON type 1 since it is the
most popular (45% of UONs are type 1) and EGDEE will simply
attempt to maximize the marketing reach and hence users who
have type 1 UON will be picked more frequently due to their
ability to channel the ad to a very popular network. On the other
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Fig. 6. Total marketing reach for a seed set size of: (a) 4, (b) 12, and (c) 20.
[ρ = 1%, β = 10k; dataset2].

hand, when we go for high diversity (e.g. DF = 12), the ads
reach all UONs in almost equal proportion. The total marketing
reach is shown in Fig. 5(b). From this figure, we see that there
is a drop in the total marketing reach of EGDEE when we are
forced to diversify over more UONs since it will have to pick
users who have presence in UONs that are needed to satisfy the
DF requirement but may not be necessarily the most optimal in
terms of maximizing the total marketing reach.

Now, let us turn our attention to analyzing the impact of the
TDS diversity constraint on the marketing reach. Recall that TDS

Fig. 7. Marketing reach in the UONs under different diversity constraint con-
ditions for a seed set size of: (a) 4, (b) 12, and (c) 20. [ρ = 1%, β = 10k;
dataset2].

specifies a set of UON types that must be covered by the seed
set (i.e. some users of the seed set must have presence on the
UON types specified by TDS to ensure that the ad is propagated to
these desired TDS). Obviously, if a particular type is more popular
than the other types and if TDS specifies the popular type, then
it is unlikely that the marketing reach will be impacted heavily
as the seed set is likely to cover that popular type anyway due to
its wide spread among users. To investigate this further, we use
dataset2 described previously to mitigate the popularity issue and
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focus more on the impact exercised by users in the different UONs
which is manifested in the dataset by the different distribution
of followers for the different UONs. The total marketing reach for
different seed sizes is shown in Fig. 6. The figure shows that, when
we restrict TDS to types that have high weight (e.g. {1, 2, 3, 4}
in this particular simulation), there is little impact on the total
marketing reach of EGDEE compared to the case where there is
no diversity restriction (i.e. TDS = φ,DF = 0). On the other hand,
the marketing reach becomes lower when we restrict TDS to UON
types that have lower weight (e.g. {7, 8, 9, 10}). Note also when
there is no restriction on terms of TDS but the value of DF is set
to 4, the value of the marketing reach is comparable to the case
when TDS is restricted to {1, 2, 3, 4} since it is likely that EGDEE
will attempt to satisfy the diversity factor requirement by picking
users with higher weight UONs to maximize the marketing reach
and hence the comparable results. The figure also shows that GNF
has the worst performance of all since it is not sensitive to the
presence of users in other social network. We also tested a varia-
tion of GNF that considers the diversity constraint which we refer
to as GNF with diversity enforced at the end (GNFDEE). Basically,
GNFDEE works in a similar way to EGDEE in the sense that when
the number of users remaining to be chosen is just enough to
satisfy the diversity constraint, GNFDEE will add the user that
results in the maximum increase in the number of followers of
the seed set and satisfy the diversity constraint. Interestingly,
GNFDEE has better performance than GNF (although way below
EGDEE). This once more underscores our previous observations
that blindly basing the selection of users on the number of fol-
lowers in TOSN leads to missing the real weight of users since we
do not consider their impact on other social networks. By forcing
GNF to diversify, it ended up picking users that have higher
weight due to the presence in other social networks and hence
improved the overall marketing reach. Observe that the relative
performance of the different algorithms remains the same when
the seed size increases. However, for EGDEE, the gap between the
case where TDS is restricted to {7, 8, 9, 10} (lower weight UONs)
and the case where TDS is restricted to {1, 2, 3, 4} (higher weight
UONs) decreases. The value of this gap is 23.6%, 16.4%, and 9.2%
of marketing reach value of the unrestricted EGDEE (i.e. TDS =
φ,DF = 0) when the seed size is 4, 12, and 20, respectively. With
larger seed size, EGDEE is able to compensate the decrease that is
caused by the constraint TDS = {7, 8, 9, 10} through the selection
of larger number of users who have higher weight.

Fig. 7 shows the marketing reach in the UONs for the previous
scenario. Note that for GNF and GNFDEE, there is no clear concen-
tration of marketing reach on the high weight networks (i.e. low
numbered network types) as they pick users with high number of
followers even if these users do not have high weight in terms of
their presence in other social networks. On the other hand, this
concentration is evident for EGDEE for all cases except when it is
restricted by the constraint TDS = {7, 8, 9, 10} to select users so
that the ads reaches these chosen network types.

7. Conclusion

In this paper, we presented a model to better capture the
interactions that occur in modern online social networks. We
also introduced a new optimization problem of maximizing the
combined influence of a set of users that incorporates a diversity
constraint of the users’ other social networks. In addition, we
proposed a greedy algorithm to tackle this diversity-constrained
influence maximization problem. Numerical results show that our
proposed algorithm performs much better than the algorithms
that simply base their users selection on the targeted network
metrics as they fail to take into account user influence that he
exercised in other social networks that he is a member of.

For future directions, it will be interesting to study the prob-
lem of estimating the parameters of the presented model, which
may not be an easy task given that most social networks compa-
nies will not share the users actions and interactions recorded
over their platforms due to privacy laws. Hence, the problem
need to be tackled by observing the public interactions between
users to estimate different parameters such as the probabilities
of reading posts and sharing them. Another interesting direction
for investigation is to explore how to dynamically update the
seed set of the viral marketing campaign based on the sentiment
analysis of the users’ opinions about the product being advertised.
For example, once a negative sentiment starts to emerge in a
given social network, the seed set in that network may need to be
changed or increased to combat the negative views before they
become widespread in that particular social network.
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